Under the Radar: Determinants of Honesty in an Online Labor Market

[Work in progress: Do Not Cite]

Winter Mason
Siddharth Suri
Daniel G. Goldstein

Honesty in AMT

• Expected (or at least desired) of workers
• Expected of requesters
• But when do people deviate from honest behavior?
• Will vary
  – What can be gained by cheating
  – How many lies one must tell for that gain
Experimental Paradigm

- Recruit turkers. Same base pay to avoid selection
- Ask participants about demographics
  - Sex, Age, Country, Income, Education
- Ask participants to privately roll a die (or dice) and report outcome to determine payout

* borrowed from Fischbacher & Heusi

Three studies

1. Baseline: comparison with prior work
   - One die, $0.25 + $0.25 / pip
   - [$0.50, $1.75], E=$1.125
   - Average cheater gain would be $.63 (max cheater, that is)
   - N=176 (93 US, 83 India)
Honest Baseline Payouts

Three studies

1. Low Variance: less to be gained by dishonesty
   - One die, $1.00 + $0.05 / pip
   - [$1.05, $1.30], E=$1.175
   - Average cheater gain would be $.13
   - N=267 (140 US, 127 India)
10/5/2012

Honest Low Variance Payouts

Three studies

3. Thirty rolls: more chances to lie (and be caught)
   - Thirty dice, $0.25 + $0.01 / pip
   - [$0.55, $2.05], E=$1.30
   - Average cheater gain would be $.75
   - N=233 (108 US, 125 India)
Honest Thirty Roll Payouts
Baseline

- Average reported roll significantly higher than expected
  - $M = 3.91, p < 0.0005$
- Similar to Fischbacher & Huesi

Conclusion thus far

- People are cheating when they can make as much as $$.63 on average by doing so.
Low Variance

• Average reported roll significantly higher than expected
  – $M = 3.77, p < 0.01$
• Same (no sig difference in distribution) as before

Conclusion thus far

• People cheat just as much when they can only make $.13 on average by doing so
Thirty rolls

- Average reported roll much closer to expected (still sig. diff)
  - $M = 3.57, p < 0.0005$

-v-Overall, much less dishonesty
- Only 3 of 232 participants reported significantly unlikely outcomes
- Only 1 participant was fully income maximizing (all sixes)
Conclusion thus far

• People don’t cheat very often when given multiple opportunities

How does dishonesty decrease as a function of opportunities to cheat

• Random assignment to roll 1, 2, 4, 5, 10, or 20 times (n=100 per condition)
• Average, min, max payout the same in all conds:
  – 1 roll condition, 20 cents per pip
  – 2 roll condition, 10 cents per pip
  – 4 roll condition, 5 cents per pip
  – 5 roll condition, 4 cents per pip
  – 10 roll condition, 2 cents per pip
  – 20 roll condition, 1 cent per pip
Distribution of rolls as number of rolls increases

Average roll as a function of rolls
Conclusion thus far

• People lie a relatively high proportion of the time when they have few opportunities, but a lower proportion when they have more opportunities

• A simple way to get the average response “more honest” is to break it over many tasks within one participant
  – Average roll is 4.2 in 1 roll condition vs.
  – 3.57 in 30 roll condition

Moderators
Fear of detection and punishment

- Making Turkers very aware that their work would be accepted no matter what increased dishonesty (one roll mean 4.2-4.3 here, 3.9 in previous study)

Honesty and Qualifications

- In 30-roll study, work was broken in to 10 HITs – 5 qualification levels – India & U.S.
- No significant differences across means

<table>
<thead>
<tr>
<th>Qualification</th>
<th>U.S.A.</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-89%</td>
<td>3.71</td>
<td>3.48</td>
</tr>
<tr>
<td>90-94%</td>
<td>3.57</td>
<td>3.56</td>
</tr>
<tr>
<td>95-97%</td>
<td>3.60</td>
<td>3.55</td>
</tr>
<tr>
<td>98-99%</td>
<td>3.63</td>
<td>3.55</td>
</tr>
<tr>
<td>100%</td>
<td>3.46</td>
<td>3.54</td>
</tr>
</tbody>
</table>
Honesty and Qualifications

• In 30-roll study, work was broken into 10 HITs
  – 5 qualification levels
  – India & U.S.

• No significant differences across means

• Only two differed from fair mean

<table>
<thead>
<tr>
<th>Qualification</th>
<th>U.S.A.</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-89%</td>
<td>3.71</td>
<td>3.48</td>
</tr>
<tr>
<td>90-94%</td>
<td>3.57</td>
<td>3.56</td>
</tr>
<tr>
<td>95-97%</td>
<td>3.60</td>
<td>3.65</td>
</tr>
<tr>
<td>98-99%</td>
<td>3.63</td>
<td>3.55</td>
</tr>
<tr>
<td>100%</td>
<td>3.46</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Honesty and Demographics

• Fit model using all collected demographics to predict average roll in baseline study and 30-roll study

• Looked at education, race, income, age, sex

• No demographic difference significantly predicted deviation from fair outcome
Ongoing work

• Why does honesty increase with the number of rolls?
  – Afraid of detection & punishment
  – Telling multiple lies feels worse

Thank you!